Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

Transcranial magnetic stimulation (TMS) is the use of powerful rapidly changing magnetic fields to induce electric fields in the brain by electromagnetic induction without the need for surgery or external electrodes. Repetitive transcranial magnetic stimulation is known as rTMS.

Introduction[edit | edit source]

The International Federation of Clinical Neurophysiology has developed the following description of TMS and rTMS:

Technical developments in the devices used for TMS made it possible in the late 1980’s to apply TMS in trains of multiple stimuli per second. This form of TMS is called repetitive TMS or rTMS. In rTMS, stimuli are applied to the same brain area several times per second during several consecutive seconds. The number of stimuli per second, the strength of the stimuli, the duration of the train of stimulation, the interval between trains, the total number of trains and the total number of stimuli in a given session or to a given brain position can all be varied. All these aspects of rTMS are referred to as stimulation parameters....

Repetitive TMS can be used to study how the brain organizes different functions such as language, memory, vision, or attention. In addition, rTMS seems capable of changing the activity in a brain area even beyond the duration of the rTMS application itself. In other words, it seems possible to make a given brain area work more or less for a period of minutes, hours, days or even weeks when rTMS is applied repeatedly several days in a row. This has opened up the possibility of using rTMS for therapy of some illnesses in neurology and psychiatry. However, this therapeutic potential of rTMS is still being studied and should not be considered proven.

TMS in research[edit | edit source]

The principle of inductive brain stimulation with eddy currents has been known since the 19th century. The first successful TMS study was performed by Anthony Barker et al. (Lancet, 1985) in Sheffield, England. Its earliest application was to demonstrate conduction of nerve impulses from the motor cortex to the spinal cord noninvasively. This had been done with transcranial electrical stimulation a few years earlier, but use of this technique is limited by severe discomfort. By stimulating different points of the cortex and recording responses, e.g., from muscles, one may obtain maps of functional brain areas. By measuring EEG, one may obtain information about the healthiness of the cortex (its reaction to TMS) and about area-to-area connections.

One reason TMS is important in neuroscience is that it can demonstrate causality. A noninvasive mapping technique such as fMRI allows researchers to see what regions of the brain are activated when a subject performs a certain task, but this is not proof that those regions are actually used for the task; it merely shows that the a region is associated with a task. If activity in the associated region is suppressed with TMS stimulation and a subject then performs worse on a task, this is much stronger evidence that the region is used in performing the task.

For instance, subjects asked to memorize and repeat a stream of numbers would likely show, via fMRI, activation in the prefrontal cortex (PFC), which seems to be important in short-term memory. If the researcher then interfered with the PFC via TMS, the subjects' ability to remember numbers would decline, and the researcher would have evidence that the PFC is important for short-term memory, because reducing subjects' PFC capability led to reduced short-term memory.

Pioneers in the use of TMS in neuroscience research include Barker et al., Vahe Amassian and Alvaro Pascual-Leone of Harvard Medical School. Currently, thousands of TMS stimulators are in use. More than 3000 scientific publications have been published describing scientific, diagnostic, and therapeutic trials. Massimini et al. (Science, 2005) used EEG to show that during sleep, brain areas do not pass signals to other brain areas as effectively as during wakefulness.

How TMS works[edit | edit source]

The exact details of how TMS functions are still being explored, but the MIT Technology Review listed some potential mechanisms:

A doctor typically holds a powerful magnet over the frontal regions of the patient’s skull and delivers magnetic pulses for a few minutes a day, over the course of a few weeks. The treatment alters the biochemistry and firing patterns of neurons in the cortex, the part of the brain nearest the surface. Preliminary research indicates that the treatment affects gene activity, levels of neurotransmitters like serotonin and dopamine, and the formation of proteins important for cellular signaling—any of which could play a role in alleviating depression. What’s more, magnetic stimulation seems to affect several interconnected brain regions, starting in the cortex and moving to the deep brain, where new cell growth may be important in regulating moods. (Technology Review, March 2004 PDF)

Technical Information on TMS[edit | edit source]

TMS is simply the application of the principle of induction to get electrical current across the insulating tissues of the scalp and skull without discomfort. A coil of wire, encased in plastic, is held to the head. When the coil is energized by the rapid discharge of a large capacitor, a rapidly changing current flows in its windings. This produces a magnetic field oriented orthogonally to the plane of the coil. The magnetic field passes unimpeded through the skin and bone of the head, inducing an oppositely directed current in the brain that flows tangentially with respect to skull. The current induced in the structure of the brain activates nearby nerve cells in much the same way as currents applied to directly to the cortical surface. The path of this current is complex to model because the brain is a non-uniform conductor with an irregular shape. With stereotactic, MRI-based control, the precision of targeting TMS can be as good as a few millimeters (Hannula et al., Human Brain Mapping 2005).

TMS as therapy[edit | edit source]

TMS is currently under study as a treatment for severe depression, auditory hallucinations, migraine headaches and tinnitus. It is particularly interesting as it may provide a viable treatment to certain aspects of drug resistant mental illness, particularly as an alternative to electroconvulsive therapy. TMS is also under investigation for the treatment of drug-resistant epilepsy.

Although research in this area is in its infancy, there is now strong evidence that TMS is an effective treatment for both depression and auditory hallucinations, with more symptoms and disorders being researched.

In late 2008 the US Food and Drug Administration FDA cleared an rTMS system for the treatment of Major Depressive Disorder. The therapy is indicated only for adult MDD patients who have failed to achieve satisfactory improvement from one prior antidepressant medication at or above the minimal effective dose and duration in the current episode. Several other TMS/rTMS devices are approved by the US FDA for stimulation of peripheral nerve and, therefore, can be used "off label" by individual physicians to treat brain disorders, essentially in any way they believe appropriate, analogous to the off label use of medications. Many clinics across the United States now offer rTMS as a clinical therapy option for their patients, in addition a great deal of TMS in the US and elsewhere is currently being done under research protocols approved by hospital ethics boards and, in the US, often under Investigational Device Exemption from the FDA. The requirement for FDA approval for research use of TMS is determined by the degree of risk as assessed by the investigators, the FDA, and the local ethics authority. As regulated medical devices, TMS devices are not sold to the general public. They are also expensive (25,000-100,000 USD; together with state-of-the-art targeting and recording instruments, up to about 500,000 USD). In Europe, TMS devices that have been manufactured according to the Medical Device Directive have been granted the CE mark and can thus be freely marketed within the EU.

God helmet[edit | edit source]

The term God Helmet refers to a controversial experimental apparatus in neurotheology. The apparatus, placed on the heads of experimental subjects, stimulated their brains with magnetic fields. Some subjects reported experiences similar to spiritual experiences.[1] The leading researcher in this area is Michael Persinger. Persinger uses a modified snowmobile helmet or a head-circlet device nicknamed the Octopus that contain solenoids which create a weak but complex magnetic field over the brain's right-hemisphere parietal and temporal lobes. Persinger reports that at least 80 per cent of his participants experience a presence beside them in the room, which they variously say feels like God or someone they knew who had died.

Yet there is controversy whether Persinger measured actual effects or just led his subjects into believing they experienced an electronically-induced epiphany. In December 2004 Nature reported that a group of Swedish researchers, replicating the experiment under double-blind conditions, was not able to verify the effect. Susan Blackmore, experimental psychologist and experienced researcher of "paranormal" experiences, was reluctant to give up on the theory just yet. She said "When I went to Persinger's lab and underwent his procedures I had the most extraordinary experiences I've ever had....I'll be surprised if it turns out to be a placebo effect." Persinger, however, takes issue with the Swedish attempts to replicate his work. "They didn't replicate it, not even close," he says. He argues that the Swedish group did not expose the subjects to magnetic fields for long enough to produce an effect. He also stresses that some of his studies were double blinded.

A report of an experiment on Richard Dawkins in 2003 said:

The experiment is based on the recent finding that some sufferers from temporal lobe epilepsy, a neurological disorder caused by chaotic electrical discharges in the temporal lobes of the brain, seem to experience devout hallucinations that bear a striking resemblance to the mystical experiences of holy figures such as St Paul and Moses.

Dawkins was reported not to have experienced a religious feeling. The report said:

Dr Persinger has explained away the failure of this Transcranial Magnetic Stimulator. Before donning the helmet, Prof Dawkins had scored low on a psychological scale measuring proneness to temporal lobe sensitivity.

See also[edit | edit source]

References[edit | edit source]

  1. includeonly>Shermer, Michael. "Why People Believe in God: An Empirical Study on a Deep Question", American Humanist Association, 1999-11-01, pp. 2. Retrieved on 2006-04-05.

External links[edit | edit source]

This page uses Creative Commons Licensed content from Wikipedia (view authors).
Community content is available under CC-BY-SA unless otherwise noted.