Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Clinical: Approaches · Group therapy · Techniques · Types of problem · Areas of specialism · Taxonomies · Therapeutic issues · Modes of delivery · Model translation project · Personal experiences ·

Posturography is a general term that covers all the techniques used to quantify postural control in upright stance in either static or dynamic conditions. Among them, Computerized dynamic posturography (CDP), also called test of balance (TOB), is a non-invasive specialized clinical assessment technique used to quantify the central nervous system adaptive mechanisms (sensory, motor and central) involved in the control of posture and balance, both in normal (such as in physical education and sports training) and abnormal conditions (particularly in the diagnosis of balance disorders and in physical therapy and postural re-education). Due to the complex interactions among sensory, motor, and central processes involved in posture and balance, CDP requires different protocols in order to differentiate among the many defects and impairments which may affect the patient's posture control system. Thus, CDP challenges it by using several combinations of visual and support surface stimuli and parameters.

Clinical applications for CDP were first described by L.M. Nashner in 1982, and the first commercially available testing system was developed in 1986, when NeuroCom International, Inc., launched the EquiTest system.

How it works[edit | edit source]

Static posturography is carried out by placing the patient in a standing posture on a fixed instrumented platform (forceplate) connected to sensitive detectors (force and movement transducers), which are able to detect the tiny oscillations of the body. Dynamic posturography differentiates from static posturography generally by using a special apparatus with a movable horizontal platform. As the patient makes small movements, they transmit in real time to a computer this time-varying information. The computer is also used to command electric motors which can move the forceplate in the horizontal direction (translation) as well as to incline it (rotations). Thus, the posturography test protocols generate a sequence of standardized motions in the support platform in order to desequilibrate the patient's posture in an orderly and reproducible way. The platform is contained within an enclosure which can also be used to generate apparent visual surround motions. These stimuli are calibrated relative to the patient's height and weight. A special computer software integrates all this and produces detailed graphics and reports which can then be compared with normal ranges.

The test protocols usually include a Sensory Organization Test (SOT), a Motor Control Test (MCT) and an Adaptation Test (ADT). Minute spontaneous body sways are measured as well as reactions provoked by unexpected abrupt movements of the platform and the visual surroundings.

According to necessity of the diagnostic workup, CDP can be combined with other techniques, such as electronystagmography (ENG) and electromyography.

The main indications for CDP are dizziness and vertigo, and postural imbalances (balance disorders).

See also[edit | edit source]

References[edit | edit source]

  • Nashner LM et al. Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. J Neurosci. 1982 May;2(5):536-44. Medline abstract
  • Monsell EM, et al. Technology assessment: computerized dynamic platform posturography". Otolarynogol Head Neck Surg 1997, 117:394-398. Medline abstract
  • Goebel, JA (Editor). Practical Management of the Dizzy Patient. Lippincott Williams & Wilkins Publ. 2000.

External links[edit | edit source]

Community content is available under CC-BY-SA unless otherwise noted.