Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory

Panel (data) analysis is a statistical method, widely used in social science and epidemiology which deals with two-dimensional panel data.[1] The data are usually collected over time and over the same individuals and then a regression is run over these two dimensions. Multidimensional analysis is an statistical method in which data is collected over more than two dimensions (typically, time, individuals, and some third dimension).[2]

A common panel data regression model looks like , where y is the dependent variable, x is the independent variable, a and b are coefficients, i and t are indices for individuals and time. The error is very important in this analysis. Assumptions about the error term determine whether we speak of fixed effects or random effects. In a fixed effects model, is assumed to vary non-stochastically over or making the fixed effects model analogous to a dummy variable model in one dimension. In a random effects model, is assumed to vary stochastically over or requiring special treatment of the error variance matrix.[3]

Panel data analysis has three more-or-less independent approaches:

The selection between these methods depends upon the objective of our analysis, and the problems concerning the exogeneity of the explanatory variables.

Independently pooled panels[edit | edit source]

Key Assumption: There are no unique attributes of individuals within the measurement set, and no universal effects across time.

Fixed effect models[edit | edit source]

Key Assumption: There are unique attributes of individuals that are not the results of random variation and that do not vary across time. Adequate, if we want to draw inferences only about the examined individuals.

Random effect models[edit | edit source]

Key Assumption: There are unique, time constant attributes of individuals that are the results of random variation and do not correlate with the individual regressors. This model is adequate, if we want to draw inferences about the whole population, not only the examined sample.

See also[edit | edit source]

  1. Madalla, G.S., 2001. Introduction to Econometrics, New York: Wiley.
  2. Davies, A. and K. Lahiri, 1995. "A new framework for testing rationality and measuring aggregate shocks using panel data." Journal of Econometrics, 68(1), 205-227.
  3. Hsiao, C., K. Lahiri, L. Lee, and M.H. Pesaran, eds., 1999. Analysis of Panels and Limited Dependent Variable Models, Cambridge: Cambridge University Press.

This page uses Creative Commons Licensed content from Wikipedia (view authors).
Community content is available under CC-BY-SA unless otherwise noted.