Psychology Wiki
Advertisement

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)


Merge-arrow
It has been suggested that this article or section be merged into [[::Heterosis|Heterosis]]. (Discuss)

Dominance versus overdominance is a scientific controversy in the field of genetics that has persisted for more than a century.[1] These two alternative hypotheses were first stated in 1908.

Genetic basis of heterosis[]

When a population is small or inbred, it tends to lose genetic diversity. Inbreeding depression is the loss of fitness due to loss of genetic diversity. Inbred strains tend to be homozygous for recessive alleles that are mildly harmful (or produce a trait that is undesirable from the standpoint of the breeder). Heterosis or hybrid vigor, on the other hand, is the tendency of outbred strains to exceed both inbred parents in fitness.

Selective breeding of animals, including hybridization, began long before there was an understanding of underlying scientific principles. In the early 20th century, after Mendel's laws came to be understood and accepted, geneticists undertook to explain the superior vigor of many plant hybrids. Two competing hypotheses, which are not mutually exclusive, were developed:[2]

File:Heterosis.svg

Genetic basis of heterosis. Dominance hypothesis. Scenario A. Fewer genes are under-expressed in the homozygous individual. Gene expression in the offspring is equal to the expression of the fittest parent. Overdominance hypothesis. Scenario B. Over-expression of certain genes in the heterozygous offspring. (The size of the circle depicts the expression level of gene A)

  • Dominance hypothesis. The dominance hypothesis attributes the superiority of hybrids to the suppression of undesirable recessive alleles from one parent by dominant alleles from the other. It attributes the poor performance of inbred strains to loss of genetic diversity, with the strains becoming purely homozygous at many loci. The dominance hypothesis was first expressed in 1908 by the geneticist Charles Davenport.[3]
  • Overdominance hypothesis. Certain combinations of alleles that can be obtained by crossing two inbred strains are advantageous in the heterozygote. The overdominance hypothesis attributes to heterozygote advantage the survival of many alleles that are recessive and harmful in homozygotes. It attributes the poor performance of inbred strains to a high percentage of these harmful recessives. The overdominance hypothesis was developed independently by Edward M. East (1908)[4] and George Shull (1908).[5]

Dominance and overdominance have different consequences for the gene expression profile of the individuals. If over-dominance is the main cause for the fitness advantages of heterosis, then there should be an over-expression of certain genes in the heterozygous offspring compared to the homozygous parents. On the other hand, if dominance is the cause, fewer genes should be under-expressed in the heterozygous offspring compared to the parents. Furthermore, for any given gene, the expression should be comparable to the one observed in the fitter of the two parents.

Historical retrospective[]

Population geneticist James Crow, who in his younger days believed that overdominance was a major contributor to hybrid vigor undertook a retrospective review of the developing science.[6] According to Crow, the demonstration of several cases of heterozygote advantage in Drosophila and other organisms first caused great enthusiasm for the overdominance theory among scientists studying plant hybridization. But overdominance implies that yields on an inbred strain should decrease as inbred strains are selected for the performance of their hybrid crosses, as the proportion of harmful recessives in the inbred population rises. Over the years, experimentation in plant genetics has proven that the reverse occurs, that yields increase in both the inbred strains and the hybrids, suggesting that dominance alone may be adequate to explain the superior yield of hybrids. Only a few conclusive cases of overdominance have been reported in all of genetics. Since the 1980s, as experimental evidence has mounted, the dominance theory has made a comeback.

Crow writes, "The current view ... is that the dominance hypothesis is the major explanation of inbreeding decline and the high yield of hybrids. There is little statistical evidence for contributions from overdominance and epistasis. But whether the best hybrids are getting an extra boost from overdominance or favorable epistatic contributions remains an open question."[6]

See also[]

Notes[]

  1. Birchler, J.A.; Auger, D.L.; Riddle, N.C. (2003). In search of the molecular basis of heterosis. The Plant Cell. 15: 2236–2239.
  2. Crow, James F. (1948). Alternative Hypotheses of Hybrid Vigor. Genetics 33 (5): 477–487.
  3. Davenport CB (1908). Degeneration, albinism and inbreeding. Science 28 (718): 455.
  4. East EM (1908). Inbreeding in corn. Reports of the Connecticut Agricultural Experiments Station for 1907: 419–428.
  5. Shull GH (1908). The composition of a field of maize. Reports of the American Breeders Association: 296–301.
  6. 6.0 6.1 Crow, James F. (1998). 90 Years Ago: The Beginning of Hybrid Maize. Genetics 148 (3): 923–928.
This page uses Creative Commons Licensed content from Wikipedia (view authors).
Advertisement