Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

This article needs rewriting to enhance its relevance to psychologists..
Please help to improve this page yourself if you can..

Carboxy-lyases, also known as decarboxylases, are carbon-carbon lyases that add or remove a carboxyl group from organic compounds. These enzymes catalyze the decarboxylation of amino acids, beta-keto acids and alpha-keto acids[1].

Classification and nomenclature[edit | edit source]

Carboxy-lyases are categorized under EC number 4.1.1. [2] Usually, they are named after the substrate whose decarboxylation they catalyze, for example Pyruvate decarboxylase catalyzes the decarboxylation of Pyruvate

Examples[edit | edit source]

See also[edit | edit source]

External links[edit | edit source]

References[edit | edit source]

  • Acevedo, S. F., Pfankuch, T., Ohtsu, H., & Raber, J. (2006). Anxiety and cognition in female histidine decarboxylase knockout (Hdc-super(-/-)) mice: Behavioural Brain Research Vol 168(1) Mar 2006, 92-99.
  • Akbarian, S., & Huang, H.-S. (2006). Molecular and cellular mechanisms of altered GAD1/ GAD67 expression in schizophrenia and related disorders: Brain Research Reviews Vol 52(2) Sep 2006, 293-304.
  • Akbarian, S., & Jones, E. G. (1995). "Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics": Reply: Archives of General Psychiatry Vol 52(4) Apr 1995, 277-278.
  • Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., & et al. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics: Archives of General Psychiatry Vol 52(4) Apr 1995, 258-266.
  • Altier, H., Moldes, M., & Monti, J. M. (1975). The actions of dihydroxyphenylalanine and dihydroxyphenylserine on the sleep-wakefulness cycle of the rat after peripheral decarboxylase inhibition: British Journal of Pharmacology Vol 54(1) May 1975, 101-106.
  • Bagnoli, P., & et al. (1982). Effects of early monocular deprivation on choline acetyltransferase and glutamic acid decarboxylase in pigeon visual Wulst: Brain Research Vol 247(2) Sep 1982, 289-302.
  • Bannai, M., Ichikawa, M., Nishihara, M., & Takahashi, M. (1998). Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity: Brain Research Vol 784(1-2) Feb 1998, 305-315.
  • Bartolome, J. V., Bartolome, M. B., Daltner, L. A., Evans, C. J., & et al. (1986). Effects of !b-endorphin on ornithine decarboxylase in tissues of developing rats: A potential role for this endogenous neuropeptide in the modulation of tissue growth: Life Sciences Vol 38(25) Jun 1986, 2355-2362.
  • Bartolome, J. V., Johnston, J. G., & Schanberg, S. M. (1994). The inhibition of liver ornithine decarboxylase expression in neonatal rats by maternal separation or CNS !b-endorphin is independent of the pituitary: Life Sciences Vol 54(10) 1994, 679-686.
  • Billings, L. M., & Marshall, J. F. (2004). Glutamic Acid Decarboxylase 67 mRNA Regulation in Two Globus Pallidus Neuron Populations by Dopamine and the Subthalamic Nucleus: Journal of Neuroscience Vol 24(12) Mar 2004, 3094-3103.
  • Borelli, K. G., Ferreira-Netto, C., & Brandao, M. L. (2006). Distribution of Fos immunoreactivity in the rat brain after freezing or escape elicited by inhibition of glutamic acid decarboxylase or antagonism of GABA-A receptors in the inferior colliculus: Behavioural Brain Research Vol 170(1) Jun 2006, 84-93.
  • Borglum, A. D., Hampson, M., Kjeldsen, T. E., Muir, W., Murray, V., Ewald, H., et al. (2001). Dopa decarboxylase genotypes may influence age at onset of schizophrenia: Molecular Psychiatry Vol 6(6) Nov 2001, 712-717.
  • Borison, R. L., Mosnaim, A. D., & Sabelli, H. C. (1974). Biosynthesis of brain 2-phenylethylamine: Influence of decarboxylase inhibitors and d-amphetamine: Life Sciences Vol 15(10) Nov 1974, 1837-1848.
  • Brabant, C., Quertemont, E., Anaclet, C., Lin, J.-S., Ohtsu, H., & Tirelli, E. (2007). The psychostimulant and rewarding effects of cocaine in histidine decarboxylase knockout mice do not support the hypothesis of an inhibitory function of histamine on reward: Psychopharmacology Vol 190(2) Feb 2007, 251-263.
  • Carter, R. B., & Appel, J. B. (1976). Blockade of the behavioral effects of 5-HTP by the decarboxylase inhibitor Ro 4-4602: Pharmacology, Biochemistry and Behavior Vol 4(4) Apr 1976, 407-409.
  • Clayton, P. T., Surtees, R. A. H., DeVille, C., Hyland, K., & Heales, S. J. R. (2003). Neonatal epileptic encephalopathy: Lancet Vol 361(9369) May 2003, 1614.
  • Costa, E., Davis, J. M., Dong, E., Grayson, D. R., Guidotti, A., Tremolizzo, L., et al. (2004). A GABAergic Cortical Deficit Dominates Schizophrenia Pathophysiology: Critical Reviews in Neurobiology Vol 16(1-2) 2004, 1-23.
  • Cowen, P. J., Green, A. R., Nutt, D. J., & Martin, I. L. (1981). Ethyl !b-carboline carboxylate lowers seizure threshold and antagonizes flurazepam-induced sedation in rats: Nature Vol 290(5801) Mar 1981, 54-55.
  • da Silveira Andrade da Costa, B. L., & Hokoc, J. N. (2003). Coexistence of GAD-65 and GAD-67 with tyrosine hydroxylase and nitric oxide synthase in amacrine and interplexiform cells of the primate, Cebus apella: Visual Neuroscience Vol 20(2) Mar-Apr 2003, 153-163.
  • De Luca, V., Muglia, P., Masellis, M., Dalton, E. J., Wong, G. W. H., & Kennedy, J. L. (2004). Polymorphisms in glutamate decarboxylase genes: Analysis in schizophrenia: Psychiatric Genetics Vol 14(1) Mar 2004, 39-42.
  • Dugast-Darzacq, C., Egloff, S., & Weber, M. J. (2004). Cooperative dimerization of the POU domain protein Brn-2 on a new motif activates the neuronal promoter of the human aromatic L-amino acid decarboxylase gene: Molecular Brain Research Vol 120(2) Jan 2004, 151-163.
  • Edery, H., & Gottesfeld, Z. (1975). The g-aminobutyricacid (GABA) system in rat cerebellum during cannabinoid-induced cataleptoid state: British Journal of Pharmacology Vol 54(3) Jul 1975, 406-408.
  • Edmonds, D. E. (1975). The effect of alpha-methyl-p-tyrosine methyl ester on temporal summation in the neural substrate for the reinforcement effect in self-stimulation: Dissertation Abstracts International.
  • Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C., & Realmuto, G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices: Biological Psychiatry Vol 52(8) Oct 2002, 805-810.
  • Fehr, C., Rademacher, B. L. S., & Buck, K. J. (2003). Evaluation of the glutamate decarboxylase genes gad 1 and gad 2 as candidate genes for acute ethanol withdrawal severity in mice: Progress in Neuro-Psychopharmacology & Biological Psychiatry Vol 27(3) May 2003, 467-472.
  • Gage, F. H., & Olton, D. S. (1976). L -dopa reduces hyperreactivity induced by septal lesions in rats: Behavioral Biology Vol 17(2) Jun 1976, 213-218.
  • Gaitonde, M. K., & Festing, M. F. (1976). Brain glutamic acid decarboxylase and open field activity in ten inbred strains of mice: Brain Research Vol 103(3) 1976, 617-621.
  • Gaughran, F., Howes, O. D., Chrisman, L., & Vincent, A. (2005). Serum glutamic acid decarboxylase 65 antibody levels in people with schizophrenia and their families: Schizophrenia Research Vol 73(2-3) Mar 2005, 379-381.
  • Gierdalski, M., Jablonska, B., Siucinska, E., Lech, M., Skibinska, A., & Kossut, M. (2001). Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning: Cerebral Cortex Vol 11(9) Sep 2001, 806-815.
  • Goodale, D. B., & Moore, K. E. (1976). A comparison of the effects of decarboxylase inhibitors on L-dopa-induced circling behavior and the conversion of dopa to dopamine in the brain: Life Sciences Vol 19(5) Sep 1976, 701-706.
  • Goodman, A. B. (1996). Retinoid dysregulation may result in abnormal expression of glutamic acid decarboxylase in schizophrenia: Archives of General Psychiatry Vol 53(7) Jul 1996, 653.
  • Gronan, R. J. (1975). Time and dose influences on the behavioral effects of L-DOPA and 5-hydroxytryptophan after inhibition of extracerebral decarboxylase: Pharmacology, Biochemistry and Behavior Vol 3(2) Mar-Apr 1975, 161-166.
  • Guidotti, A., Auta, J., Davis, J. M., Di-Giorgi-Gerevini, V., Dwivedi, Y., Grayson, D. R., et al. (2002). "Decrease in reelin and glutamic acid decarboxylase-sub-6-sub-7 (GAD-sub-6-sub-7) expression in schizophrenia and bipolar disorder: A postmortem brain study": Erratum: Archives of General Psychiatry Vol 59(1) Jan 2002, 12.
  • Guidotti, A., Auta, J., Davis, J. M., Gerevini, V. D., Dwivedi, Y., Grayson, D. R., et al. (2000). Decrease in reelin and glutamic acid decarboxylase-sub-6-sub-7 expression in schizophrenia and bipolar disorder: A postmortem brain study: Archives of General Psychiatry Vol 57(11) Nov 2000, 1061-1069.
  • Haenlein, M., Caul, W. F., & Barrett, R. J. (1983). Discrimination of serotonergic drugs is unaltered in rats prenatally exposed to ethanol: Neurobehavioral Toxicology & Teratology Vol 5(4) Jul-Aug 1983, 475-478.
  • Handelmann, G. E., & et al. (1983). Effects of time and experience on hippocampal neurochemistry after damage to the CA3 subfield: Pharmacology, Biochemistry and Behavior Vol 18(4) Apr 1983, 551-561.
  • Hao, S., Mata, M., Wolfe, D., Glorioso, J. C., & Fink, D. J. (2005). Gene Transfer of Glutamic Acid Decarboxylase Reduces Neuropathic Pain: Annals of Neurology Vol 57(6) Jun 2005, 914-918.
  • Hao, S., Mata, M., Wolfe, D., Huang, S., Glorioso, J. C., & Fink, D. J. (2005). Gene transfer of glutamic acid decarboxylase reduces neuropathic pain: Correction: Annals of Neurology Vol 58(5) Nov 2005, 818.
  • Hashimoto, T., & Lewis, D. A. (2006). BDNF Val66Met Polymorphism and GAD-sub-6-sub-7 mRNA Expression in the Prefrontal Cortex of Subjects With Schizophrenia: American Journal of Psychiatry Vol 163(3) Mar 2006, 534-537.
  • Hawi, Z., Foley, D., Kirley, A., McCarron, M., Fitzgerald, M., & Gill, M. (2001). Dopa decarboxylase gene polymorphisms and attention deficit hyperactivity disorder (ADHD): No evidence for association in the Irish population: Molecular Psychiatry Vol 6(4) Jul 2001, 420-424.
  • Heckers, S., Benes, F., & Tamminga, C. A. (2005). Images in Neuroscience: American Journal of Psychiatry Vol 162(3) Mar 2005, 450.
  • Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P., & Benes, F. M. (2002). Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia: Archives of General Psychiatry Vol 59(6) Jun 2002, 521-529.
  • Ikemoto, K. (2004). Significance of human striatal D-neurons: Implications in neuropsychiatric functions: Neuropsychopharmacology Vol 29(4) Apr 2004, 429-434.
  • Iversen, L. L., Bird, E. D., Mackay, A. V., & Rayner, C. N. (1974). Analysis of glutamate decarboxylase in post-mortem tissue in Huntington's chorea: Journal of Psychiatric Research Vol 11 1974, 255-256.
  • Jiao, Y., Zhang, C., Yanagawa, Y., & Sun, Q.-Q. (2006). Major Effects of Sensory Experiences on the Neocortical Inhibitory Circuits: Journal of Neuroscience Vol 26(34) Aug 2006, 8691-8701.
  • Kaiya, H., Namba, M., Yoshida, H., & Nakamura, S. (1982). Plasma glutamate decarboxylase activity in neuropsychiatry: Psychiatry Research Vol 6(3) Jun 1982, 335-343.
  • Kaufman, D. L., Clare-Salzler, M., Tian, J., Forsthuber, T., & et al. (1993). Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes: Nature Vol 366(6450) Nov 1993, 69-72.
  • Kindlundh, A. M. S., Lindblom, J., & Nyberg, F. (2003). Chronic administration with nandrolone decanoate induces alterations in the gene-transcript content of dopamine D-sub-1- and D-sub-2-receptors in the rat brain: Brain Research Vol 979(1-2) Jul 2003, 37-42.
  • Kuriyama, K., & Yoneda, Y. (1978). Morphine induced alterations of !g-aminobutyric acid and taurine contents and {l}-glutamate decarboxylase activity in rat spinal cord and thalamus: Possible correlates with analgesic action of morphine: Brain Research Vol 148(1) Jun 1978, 163-179.
  • Lariviere, K., Samia, M., Lister, A., Van Der Kraak, G., & Trudeau, V. L. (2005). Sex steroid regulation of brain glutamic acid decarboxylase (GAD) mRNA is season-dependent and sexually dimorphic in the goldfish Carassius auratus: Molecular Brain Research Vol 141(1) Nov 2005, 1-9.
  • Lee, D. E., & Tobin, A. J. (1995). Reduced inhibitory capacity in prefrontal cortex of schizophrenics: Archives of General Psychiatry Vol 52(4) Apr 1995, 267-268.
  • Lewis, D. A. (1995). Neural circuitry of the prefrontal cortex in schizophrenia: Archives of General Psychiatry Vol 52(4) Apr 1995, 269-273.
  • Lopez-Real, A., Rodriguez-Pallares, J., Guerra, M. J., & Labandeira-Garcia, J. L. (2003). Localization and functional significance of striatal neurons immunoreactive to aromatic {L}-amino acid decarboxylase or tyrosine hydroxylase in rat Parkinsonian models: Brain Research Vol 969(1-2) Apr 2003, 135-146.
  • Lotti, V. J., & Clark, C. (1974). Carbidopa attenuation of L-dopa emesis in dogs: Evidence for a cerebral site of action outside the blood-brain barrier: European Journal of Pharmacology Vol 25(3) Mar 1974, 322-325.
  • Magyar, R. L., Gillin, J. C., & Wyatt, R. J. (1978). Tolerance to the increased locomotor activity produced by l-5-hydroxytryptophan following peripheral decarboxylase inhibition in mice: Psychopharmacology Vol 56(3) 1978, 343-350.
  • Matsui-Yuasa, I., & Otani, S. (1992). Lithium in polyamine metabolism: Lithium Vol 3(4) Nov 1992, 231-238.
  • Meguro, K.-i., Yanai, K., Sakai, N., Sakurai, E., & et al. (1995). Effects of thioperamide, a histamine H-sub-3 antagonist, on the step-through passive avoidance response and histidine decarboxylase activity in senescence-accelerated mice: Pharmacology, Biochemistry and Behavior Vol 50(3) Mar 1995, 321-325.
  • Meredith, G. E., Wouterlood, F. G., & Pattiselanno, A. (1990). Hippocampal fibers make synaptic contacts with glutamate decarboxylase-immunoreactive neurons in the rat nucleus accumbens: Brain Research Vol 513(2) Apr 1990, 329-334.
  • Minano, F. J., McMillen, B. A., & Myers, R. D. (1989). Interaction of tetrahydropapaveroline with inhibition of dopa-decarboxylase by Ro 4-4602 in brain: Effects on alcohol drinking in the rat: Alcohol Vol 6(2) Mar-Apr 1989, 133-137.
  • Nagy, L., & Hiripi, L. (2002). Role of tyrosine, DOPA and decarboxylase enzymes in the synthesis of monoamines in the brain of the locust: Neurochemistry International Vol 41(1) Jul 2002, 9-16.
  • Navarro Becerra, N., & Munaro, N. I. (1996). Glutamic acid decarboxylase activity of the olfactory bulb in male rats is influenced by olfactory stimuli and hormonal status: Neuropharmacology Vol 35(1) Jan 1996, 57-61.
  • Nistico, G., & et al. (1982). Effects of apomorphine on glutamate decarboxylase activity in chick paleostriatum augmentatum: Neuropharmacology Vol 21(9) Sep 1982, 847-850.
  • Oltmans, G. A., Lorden, J. F., & Beales, M. (1985). Lesions of the inferior olive increase glutamic acid decarboxylase activity in the deep cerebellar nuclei of the rat: Brain Research Vol 347(1) Nov 1985, 154-158.
  • Pauk, J., Kuhn, C., Field, T. M., & Schanberg, S. M. (1986). Positive effects of tactile versus kinesthetic or vestibular stimulation on neuroendocrine and ODC activity in maternally-deprived rat pups: Life Sciences Vol 39(22) Dec 1986, 2081-2087.
  • Persson, S.-A. (1977). The effect of LSD and 2-bromo LSD on the striatal dopa accumulation after decarboxylase inhibition in rats: European Journal of Pharmacology Vol 43(1) May 1977, 73-83.
  • Pradhan, S. N., Battacharyya, A. K., & Pradhan, S. (1978). Serotoninergic manipulation of the behavioral effects of cocaine in rats: Communications in Psychopharmacology Vol 2(6) 1978, 481-486.
  • Proll, M. A., & Morgan, W. W. (1982). Adaptation of retinal dopamine neuron activity in light-adapted rats to darkness: Brain Research Vol 241(2) Jun 1982, 359-361.
  • Ricci, L. A., Grimes, J. M., Knyshevski, I., & Melloni, R. H. (2005). Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD-sub-6-sub-5) immunoreactivity in hamster brain: Correlation with offensive aggression: Brain Research Vol 1035(2) Feb 2005, 131-138.
  • Rodriguez, C., Guillamon, A., Pinos, H., & Collado, P. (2004). Postpartum changes in the GABAergic system in the bed nucleus of the accessory olfactory tract: Neurochemistry International Vol 44(3) Feb 2004, 179-183.
  • Root, A. R., Nucci, N. V., Sanford, J. D., Rubin, B. S., Trudeau, V. L., & Sower, S. A. (2005). In situ Characterization of Gonadotropin-Releasing Hormone-I, -III, and Glutamic Acid Decarboxylase Expression in the Brain of the Sea Lamprey, Petromyzon marinus: Brain, Behavior and Evolution Vol 65(1) Jan 2005, 60-70.
  • Sayers, A. C., & Handley, S. L. (1974). Catalepsy induced by a-methyl-p-tyrosine and d-amphetamine: The role of catecholamine metabolism: Psychopharmacologia Vol 34(4) 1974, 325-334.
  • Schanberg, S. M., Ingledue, V. F., Lee, J. Y., Hannun, Y. A., & Bartolome, J. V. (2003). PKCalpha mediates maternal touch regulation of growth-related gene expression in infant rats: Neuropsychopharmacology Vol 28(6) 2003, 1026-1030.
  • Schneider, E., Fischer, P. A., Jacobi, P., & Maxion, H. (1973). Comparison of effects of levodopa and the combination of levodopa and a decarboxylase inhibitor in Parkinson's disease: Archiv fur Psychiatrie und Nervenkrankheiten Vol 217(1) 1973, 95-112.
  • Sida, P., Netopilova, M., & Klenerova, V. (1998). Activity of decarboxylase of glutamic acid in various brain regions of Lewis rats after amphetamine or stress: Homeostasis in Health and Disease Vol 39(1-2) Nov 1998, 75-76.
  • Slotkin, T. A., Freibaum, B. D., Tate, C. A., Thillai, I., Ferguson, S. A., Cada, A. M., et al. (2003). Long-lasting CNS effects of a short-term chemical knockout of ornithine decarboxylase during development: Nicotinic cholinergic receptor upregulation and subtle macromolecular changes in adulthood: Brain Research Vol 981(1-2) Aug 2003, 118-125.
  • Spillane, J. A., & et al. (1977). Selective vulnerability of neurones in organic dementia: Nature Vol 266(5602) Apr 1977, 558-559.
  • Spissu, A., & et al. (1975). Treatment of Sydenham's chorea with a combination of L-Dopa and a peripheral Dopa decarboxylase inhibitor: Psychopharmacologia Vol 44(3) 1975, 311-312.
  • Stork, O., Ji, F.-Y., Kaneko, K., Stork, S., Yoshinobu, Y., Moriya, T., et al. (2000). Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65: Brain Research Vol 865(1) May 2000, 45-58.
  • Su, R.-B., Wei, X.-L., Zheng, J.-Q., Liu, Y., Lu, X.-Q., & Li, J. (2004). Anticonvulsive effect of agmatine in mice: Pharmacology, Biochemistry and Behavior Vol 77(2) Feb 2004, 345-349.
  • Tisch, R., Yang, X.-d., Singer, S. M., Liblau, R. S., & et al. (1993). Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice: Nature Vol 366(6450) Nov 1993, 72-75.
  • Trojanowski, J. Q., & Arnold, S. E. (1995). In pursuit of the molecular neuropathology of schizophrenia: Archives of General Psychiatry Vol 52(4) Apr 1995, 274-276.
  • Tunnicliff, G., & Ngo, T. T. (1977). Folic acid and the inhibition of brain L-glutamic decarboxylase: Experientia Vol 33(1) 1977, 67-68.
  • Turski, L., Cavalheiro, E. A., Sieklucka-Dziuba, M., Ikonomidou-Turski, C., & et al. (1986). Seizures produced by pilocarpine: Neuropathological sequelae and activity of glutamate decarboxylase in the rat forebrain: Brain Research Vol 398(1) Nov 1986, 37-48.
  • Ugryumov, M. V., Mel'nikova, V. I., Ershov, P. V., Balan, I. S., & Kalas, A. (2002). Non-Dopaminergic Neurons Expressing Dopamine Synthesis Enzymes: Differentiation and Functional Significance: Neuroscience and Behavioral Physiology Vol 32(3) May-Jun 2002, 299-307.
  • Van Praag, H. M., Korf, J., & Lequin, R. M. (1976). An unexpected effect of l-5-hydroxytryptophan-ethylester combined with a peripheral decarboxylase inhibitor on human serum prolactin: Psychopharmacology Communications Vol 2(5-6) 1976, 369-378.
  • Vazquez, A. J., & Krip, G. (1973). Interactions between amphetamine and serotonergic agents on cat's isolated cerebral cortex: Biological Psychiatry Vol 7(1) Aug 1973, 11-22.
  • Vazquez, A. J., & Sabelli, H. C. (1975). Potentiation of the central nervous system effects of DOPA by decarboxylase inhibition: Possible direct role of this neuroamino acid in brain mechanisms: Experimental Neurology Vol 46(1) Jan 1975, 44-56.
  • Viala, D., & Buser, P. (1974). Effects of a decarboxylase inhibitor on the Dopa and 5-HTP induced changes in the locomotor-like discharge pattern of rabbit hind limb nerves: Psychopharmacologia Vol 40(3) 1974, 225-233.
  • Yarlagadda, A., Helvink, B., Chou, C., & Clayton, A. H. (2007). Blood brain barrier: The role of GAD antibodies in psychiatry: Psychiatry Vol 4(6) Jun 2007, 57-59.

This page uses Creative Commons Licensed content from Wikipedia (view authors).
Community content is available under CC-BY-SA unless otherwise noted.