Psychology Wiki

Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Statistics: Scientific method · Research methods · Experimental design · Undergraduate statistics courses · Statistical tests · Game theory · Decision theory

This article needs rewriting to enhance its relevance to psychologists..
Please help to improve this page yourself if you can..


A data visualization of Wikipedia as part of the World Wide Web, demonstrating hyperlinks

Data visualization or data visualisation is the creation and study of the visual representation of data, meaning "information that has been abstracted in some schematic form, including attributes or variables for the units of information".[1]



A data visualization from social media

According to Friedman (2008) the "main goal of data visualization is to communicate information clearly and effectively through graphical means. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex data set by communicating its key-aspects in a more intuitive way. Yet designers often fail to achieve a balance between form and function, creating gorgeous data visualizations which fail to serve their main purpose — to communicate information".[2]

Indeed, Fernanda Viegas and Martin M. Wattenberg have suggested that an ideal visualization should not only communicate clearly, but stimulate viewer engagement and attention.[3]

Data visualization is closely related to information graphics, information visualization, scientific visualization, and statistical graphics. In the new millennium, data visualization has become an active area of research, teaching and development. According to Post et al. (2002), it has united scientific and information visualization.[4] Brian Willison has demonstrated that data visualization has also been linked to enhancing agile software development and customer engagement.[5]

KPI Library has developed the “Periodic Table of Visualization Methods,” an interactive chart displaying various data visualization methods. It includes six types of data visualization methods: data, information, concept, strategy, metaphor and compound.[6]

Data visualization scope[]

There are different approaches on the scope of data visualization. One common focus is on information presentation, such as Friedman (2008) presented it. In this way Friendly (2008) presumes two main parts of data visualization: statistical graphics, and thematic cartography.[1] In this line the "Data Visualization: Modern Approaches" (2007) article gives an overview of seven subjects of data visualization:[7]

  • Mindmaps
  • Displaying news
  • Displaying data
  • Displaying connections
  • Displaying websites
  • Articles & resources
  • Tools and services

All these subjects are closely related to graphic design and information representation.

On the other hand, from a computer science perspective, Frits H. Post (2002) categorized the field into a number of sub-fields:[4]

  • Visualization algorithms and techniques
  • Volume visualization
  • Information visualization
  • Multiresolution methods
  • Modelling techniques and
  • Interaction techniques and architectures

For different types of visualizations and their connection to infographics, see infographics.

Related fields[]

Data acquisition[]

Data acquisition is the sampling of the real world to generate data that can be manipulated by a computer. Sometimes abbreviated DAQ or DAS, data acquisition typically involves acquisition of signals and waveforms and processing the signals to obtain desired information. The components of data acquisition systems include appropriate sensors that convert any measurement parameter to an electrical signal, which is acquired by data acquisition hardware.

Data analysis[]

Data analysis is the process of studying and summarizing data with the intent to extract useful information and develop conclusions. Data analysis is closely related to data mining, but data mining tends to focus on larger data sets with less emphasis on making inference, and often uses data that was originally collected for a different purpose. In statistical applications, some people divide data analysis into descriptive statistics, exploratory data analysis, and inferential statistics (or confirmatory data analysis), where the EDA focuses on discovering new features in the data, and CDA on confirming or falsifying existing hypotheses.

Types of data analysis are:

Data governance[]

Data governance encompasses the people, processes and technology required to create a consistent, enterprise view of an organisation's data in order to:

  • Increase consistency & confidence in decision making
  • Decrease the risk of regulatory fines
  • Improve data security
  • Maximize the income generation potential of data
  • Designate accountability for information quality

Data management[]

Data management comprises all the academic disciplines related to managing data as a valuable resource. The official definition provided by DAMA is that "Data Resource Management is the development and execution of architectures, policies, practices, and procedures that properly manage the full data lifecycle needs of an enterprise." This definition is fairly broad and encompasses a number of professions that may not have direct technical contact with lower-level aspects of data management, such as relational database management.

Data mining[]

Data mining is the process of sorting through large amounts of data and picking out relevant information. It is usually used by business intelligence organizations, and financial analysts, but is increasingly being used in the sciences to extract information from the enormous data sets generated by modern experimental and observational methods.

It has been described as "the nontrivial extraction of implicit, previously unknown, and potentially useful information from data"[8] and "the science of extracting useful information from large data sets or databases."[9] In relation to enterprise resource planning, according to Monk (2006), data mining is "the statistical and logical analysis of large sets of transaction data, looking for patterns that can aid decision making".[10]

Data transforms[]

Data transforms is the process of Automation and Transformation, of both real-time and offline data from one format to another. There are standards and protocols that provide the specifications and rules, and it usually occurs in the process pipeline of aggregation or consolidation or interoperability. The primary use cases are in integration systems organizations, and compliance personnels.

Data visualization software[]

Software Type Targeted Users License
Amira GUI/Code Data Visualisation Scientists Proprietary
Avizo GUI/Code Data Visualisation Engineers and Scientists Proprietary
Cave5D Virtual Reality Data Visualization Scientists Open Source
Data Desk GUI Data Visualisation Statistician Proprietary
DAVIX Operating System with data tools Security Consultant Various
Datawatch GUI Data Visualisation Business Users Proprietary
Dundas Data Visualization, Inc. GUI Data Visualisation Business Managers Proprietary
ELKI Data mining visualizations Scientists and Teachers Open Source
Eye-Sys GUI/Code Data Visualisation Engineers and Scientists Proprietary
Ferret Data Visualization and Analysis Gridded Datasets Visualisation Oceanographers and meteorologists Open Source
FusionCharts Component Programmers Proprietary
TreeMap GUI Data Visualisation Business Managers Proprietary
Trendalyzer Data Visualisation Teachers Proprietary
Tulip GUI Data Visualization Researchers and Engineers Open Source
Gephi GUI Data Visualisation Statistician Open Source
GGobi GUI Data Visualisation Statistician Open Source
Grapheur GUI Data Visualisation Business Users, Project Managers, Coaches Proprietary
ggplot2 Data visualization package for R Programmers Open Source
High-D GUI Data Visualisation Engineers and Scientists Proprietary
Mondrian GUI Data Visualisation Statistician Open Source
IBM OpenDX GUI/Code Data Visualisation Engineers and Scientists Open Source
IDL (programming language) Code Data Visualisation Programmer Many
IDL (programming language) Programming Language Programmer Open Source
Instantatlas GIS Data Visualisation Analysts, researchers, statisticians and GIS professionals Proprietary
Keyzo IT Solutions Ltd. Data Visualisation Software Software Development Proprietary
MeVisLab GUI/Code Data Visualisation Engineers and Scientists Proprietary
MindView Mind Map Graphic Visualisation Business Users and Project Managers Proprietary
Panopticon Software Enterprise application, SDK, Rapid Development Kit (RDK) Capital Markets, Telecommunications, Energy, Government Proprietary
Panorama Software GUI Data Visualisation Business Users Proprietary
ParaView GUI/Code Data Visualisation Engineers and Scientists BSD
Processing (programming language) Programming Language Programmers GPL
protovis Library / Toolkit Programmers BSD
qunb GUI Data Visualisation Non-Expert Business Users Proprietary
SAS Institute GUI Data Visualisation Business Users, Analysts Proprietary
Smile (software) GUI/Code Data Visualisation Engineers and Scientists Proprietary
Science of Science Tool (Sci2) GUI/Code Data Visualization, Network Analysis, Data Mining Scientists, Programmers, Students, Researchers Open Source
Spotfire GUI Data Visualisation Business Users Proprietary
StatSoft Company of GUI/Code Data Visualisation Software Engineers and Scientists Proprietary
Tableau Software GUI Data Visualisation Business Users Proprietary
The Hive Group: Honeycomb GUI Data Visualisation Energy, Financial Services, Manufacturers, Government, Military Proprietary
The Hive Group: HiveOnDemand GUI Data Visualisation Business Users, Academic Users Proprietary
TinkerPlots GUI Data Visualisation Students Proprietary
Tom Sawyer Software Data Visualization and Social Network Analysis Applications Capital Markets, Telecommunications, Energy, Government; Business Users, Engineers, and Scientists Proprietary
Trade Space Visualizer GUI/Code Data Visualisation Engineers and Scientists Proprietary
Visifire Library Programmers Was Open Source, now Proprietary
Vis5D GUI Data Visualization Scientists Open Source
VisAD Java/Jython Library Programmers Open Source
VisIt GUI/Code Data Visualisation Engineers and Scientists BSD
VTK C++ Library Programmers Open Source
Yoix Programming Language Programmers Open Source


Data presentation architecture[]

Data presentation architecture (DPA) is a skill-set that seeks to identify, locate, manipulate, format and present data in such a way as to optimally communicate meaning and proffer knowledge.

Historically, the term data presentation architecture is attributed to Kelly Lautt:[11] "Data Presentation Architecture (DPA) is a rarely applied skill set critical for the success and value of Business Intelligence. Data presentation architecture weds the science of numbers, data and statistics in discovering valuable information from data and making it usable, relevant and actionable with the arts of data visualization, communications, organizational psychology and change management in order to provide business intelligence solutions with the data scope, delivery timing, format and visualizations that will most effectively support and drive operational, tactical and strategic behaviour toward understood business (or organizational) goals. DPA is neither an IT nor a business skill set but exists as a separate field of expertise. Often confused with data visualization, data presentation architecture is a much broader skill set that includes determining what data on what schedule and in what exact format is to be presented, not just the best way to present data that has already been chosen (which is data visualization). Data visualization skills are one element of DPA."


DPA has two main objectives:

  • To use data to provide knowledge in the most effective manner possible (provide relevant, timely and complete data to each audience member in a clear and understandable manner that conveys important meaning, is actionable and can affect understanding, behavior and decisions)
  • To use data to provide knowledge in the most efficient manner possible (minimize noise, complexity, and unnecessary data or detail given each audience's needs and roles)


With the above objectives in mind, the actual work of data presentation architecture consists of:

  • Defining important meaning (relevant knowledge) that is needed by each audience member in each context
  • Finding the right data (subject area, historical reach, breadth, level of detail, etc.)
  • Determining the required periodicity of data updates (the currency of the data)
  • Determining the right timing for data presentation (when and how often the user needs to see the data)
  • Utilizing appropriate analysis, grouping, visualization, and other presentation formats
  • Creating effective delivery mechanisms for each audience member depending on their role, tasks, locations and access to technology

Related fields[]

DPA work has some commonalities with several other fields, including:

  • Business analysis in determining business goals, collecting requirements, mapping processes.
  • Solution architecture in determining the optimal detailed solution, including the scope of data to include, given the business goals
  • Business process improvement in that its goal is to improve and streamline actions and decisions in furtherance of business goals
  • Statistical analysis or data analysis in that it creates information and knowledge out of data
  • Data visualization in that it uses well-established theories of visualization to add or highlight meaning or importance in data presentation.
  • Information architecture, but information architecture's focus is on unstructured data and therefore excludes both analysis (in the statistical/data sense) and direct transformation of the actual content (data, for DPA) into new entities and combinations.
  • Graphic or user design: As the term DPA is used, it falls just short of design in that it does not consider such detail as colour palates, styling, branding and other aesthetic concerns, unless these design elements are specifically required or beneficial for communication of meaning, impact, severity or other information of business value. For example:
    • choosing to provide a specific colour in graphical elements that represent data of specific meaning or concern is part of the DPA skill-set
    • choosing locations for various data presentation elements on a presentation page (such as in a company portal, in a report or on a web page) in order to convey hierarchy, priority, importance or a rational progression for the user is part of the DPA skill-set.

See also[]


  1. 1.0 1.1 Michael Friendly (2008). "Milestones in the history of thematic cartography, statistical graphics, and data visualization".
  2. Vitaly Friedman (2008) "Data Visualization and Infographics" in: Graphics, Monday Inspiration, January 14th, 2008.
  3. Fernanda Viegas and Martin Wattenberg, "How To Make Data Look Sexy",, April 19, 2011.
  4. 4.0 4.1 Frits H. Post, Gregory M. Nielson and Georges-Pierre Bonneau (2002). Data Visualization: The State of the Art. Research paper TU delft, 2002.. Cite error: Invalid <ref> tag; name "FHP02" defined multiple times with different content
  5. Brian Willison, "Visualization Driven Rapid Prototyping", Parsons Institute for Information Mapping, 2008
  6. Periodic Table of Visualization Methods. URL accessed on 15 March 2013.
  7. "Data Visualization: Modern Approaches". in: Graphics, August 2nd, 2007
  8. W. Frawley and G. Piatetsky-Shapiro and C. Matheus (Fall 1992). Knowledge Discovery in Databases: An Overview. AI Magazine: pp. 213–228.
  9. D. Hand, H. Mannila, P. Smyth (2001). Principles of Data Mining, MIT Press, Cambridge, MA.
  10. Ellen Monk, Bret Wagner (2006). Concepts in Enterprise Resource Planning, Second Edition, Thomson Course Technology, Boston, MA.
  11. The first formal, recorded, public usages of the term data presentation architecture were at the three formal Microsoft Office 2007 Launch events in Dec, Jan and Feb of 2007-08 in Edmonton, Calgary and Vancouver (Canada) in a presentation by Kelly Lautt describing a business intelligence system designed to improve service quality in a pulp and paper company. The term was further used and recorded in public usage on December 16, 2009 in a Microsoft Canada presentation on the value of merging Business Intelligence with corporate collaboration processes.

Further reading[]

External links[]

Wikimedia Commons has media related to:
[[Commons: Category:Data visualization

| Data visualization


Educational visualization | Interactive visualization | Knowledge visualization | Product visualization | Scientific visualization
Related fields
Computer graphics | Computer science | Graphic design | Graphic image development | Human-computer interaction | Informatics | Visual communication
See also
Data mining | Gestalt psychology | Graph theory | Graphic organizer | Illustration | Imaging | Information graphic | Information graphic designers | List of graphical methods | List of graphing software | Representation (arts) | Representation (psychology) | Rendering (computer graphics)
This page uses Creative Commons Licensed content from Wikipedia (view authors).