Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

The chloride ion is formed when the element chlorine picks up one electron to form an anion (negatively-charged ion) Cl. The salts of hydrochloric acid HCl contain chloride ions and can also be called chlorides. An example is table salt, which is sodium chloride with the chemical formula NaCl. In water, it dissolves into Na+ and Cl ions.

The word chloride can also refer to a chemical compound in which one or more chlorine atoms are covalently bonded in the molecule. This means that chlorides can be either inorganic or organic compounds. The simplest example of an inorganic covalently-bonded chloride is hydrogen chloride, HCl. A simple example of an organic covalently-bonded (an organochloride) chloride is chloromethane (CH3Cl), often called methyl chloride.

Biological role of chloride[edit | edit source]

Chloride is a chemical the human body needs for metabolism (the process of turning food into energy).[1] It also helps keep the body's acid-base balance. The amount of chloride in the blood is carefully controlled by the kidneys. Further reading:Renal chloride reabsorption

Chloride ions have important physiological roles. For instance, in the central nervous system, the inhibitory action of glycine and some of the action of GABA relies on the entry of Cl into specific neurons. Also, the chloride-bicarbonate exchanger biological transport protein relies on the chloride ion to increase the blood's capacity of carbon dioxide, in the form of the bicarbonate ion.

Blood levels[edit | edit source]

The normal blood reference range of chloride for adults in most labs is 95 to 105 milliequivalents (mEq) per liter. The normal range may vary slightly from lab to lab. Normal ranges are usually shown next to your results in the lab report.

File:Reference ranges for blood tests - by molarity2.svg

Reference ranges for blood tests, showing blood content of chloride at far right in the spectrum.

The North American Dietary Reference Intake recommends a daily intake of between 2300 and 3600 mg/day for 25-year-old males.

See also[edit | edit source]

References[edit | edit source]

  • Allan, A. M., & Harris, R. A. (1987). Involvement of neuronal chloride channels in ethanol intoxication, tolerance, and dependence. New York, NY: Plenum Press.
  • Allan, A. M., Mayes, G. G., & Draski, L. J. (1991). Gamma-aminobutyric acid-activated chloride channels in rats selectively bred for differential acute sensitivity to alcohol: Alcoholism: Clinical and Experimental Research Vol 15(2) Apr 1991, 212-218.
  • Allan, A. M., & Savage, D. D., III. (1999). Prenatal ethanol exposure alters the modulation of the GABA-sub(A ) receptor-gated chloride ion channel in adult rat offspring. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
  • Badgaiyan, R. D. (1987). Intracerebroventricular chloride infusion enhances water intake in rats: Physiology & Behavior Vol 41(6) 1987, 605-608.
  • Badgaiyan, R. D. (1989). Third ventricular chloride infusions enhance drinking in water deprived rats: Physiology & Behavior Vol 45(5) May 1989, 951-954.
  • Belelli, D., Lan, N. C., & Gee, K. W. (1990). Anticonvulsant steroids and the GABA/benzodiazepine receptor-chloride ionophore complex: Neuroscience & Biobehavioral Reviews Vol 14(3) Fal 1990, 315-322.
  • Bitran, D., Hilvers, R. J., & Kellogg, C. K. (1991). Ovarian endocrine status modulates the anxiolytic potency of diazepam and the efficacy of !g-aminobutyric acid-benzodiazepine receptor-mediated chloride ion transport: Behavioral Neuroscience Vol 105(5) Oct 1991, 653-662.
  • Boland, F. J. (1973). Saccharin aversions induced by lithium chloride toxicosis in a backward conditioning paradigm: Animal Learning & Behavior Vol 1(1) Feb 1973, 3-4.
  • Canonaco, M., Bergamo, P., Tavolaro, R., & Miralto, A. (1991). Role of the GABA chloride ion channel component on aggressive behavior in the male crab: Physiology & Behavior Vol 49(3) Mar 1991, 411-415.
  • Costeff, H. (1991). Failure to thrive on chloride-deficient formula: Developmental Medicine & Child Neurology Vol 33(12) Dec 1991, 1118-1119.
  • Doolin, R. E., & Ache, B. W. (2005). Cyclic Nucleotide Signaling Mediates an Odorant-suppressible Chloride Conductance in Lobster Olfactory Receptor Neurons: Chemical Senses Vol 30(2) Feb 2005, 127-135.
  • Drugan, R. C., Morrow, A. L., Weizman, R., Weizman, A., & et al. (1989). Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy: Brain Research Vol 487(1) May 1989, 45-51.
  • Fernandez-Teruel, A., Escorihuela, R. M., Boix, F., Longoni, B., & et al. (1991). Imipramine and desipramine decrease the GABA-stimulated chloride uptake, and antigabaergic agents enhance their action in the forced swimming test in rats: Neuropsychobiology Vol 23(3) Feb 1991, 147-152.
  • George, D. T., & Jimerson, D. C. (1986). Changes in serum chloride ion concentration following sodium lactate infusion: American Journal of Psychiatry Vol 143(11) Nov 1986, 1499.
  • George, D. T., Lindquist, T., Nutt, D. J., Ragan, P. W., & et al. (1995). Effect of chloride or glucose on the incidence of lactate-induced panic attacks: American Journal of Psychiatry Vol 152(5) May 1995, 692-697.
  • Gewiss, M. V., Marley, R. J., Thorndike, E. B., Goldberg, S. R., & et al. (1994). GABA receptor-linked chloride channels and the behavioral effects of naltrexone in rats: Pharmacology, Biochemistry and Behavior Vol 49(3) Nov 1994, 589-597.
  • Havoundjian, H., Paul, S. M., & Skolnick, P. (1986). Acute, stress-induced changes in the benzodiazepine/!g-aminobutyric acid receptor complex are confined to the chloride ionophore: Journal of Pharmacology and Experimental Therapeutics Vol 237(3) Jun 1986, 787-793.
  • Jeffery, R. W., Mullenbach, V. A., Bjornson-Benson, W. M., Prineas, R. J., & et al. (1987). Home testing of urine chloride to estimate dietary sodium intake: Evaluation of feasibility and accuracy: Addictive Behaviors Vol 12(1) 1987, 17-21.
  • Kaleita, T. A., Kinsbourne, M., & Menkes, J. H. (1991). "Failure to thrive on chloride-deficient formula": Reply: Developmental Medicine & Child Neurology Vol 33(12) Dec 1991, 1119.
  • Kaleita, T. A., Kinsbourne, M., & Menkes, J. H. (1991). A neurobehavioral syndrome after failure to thrive on chloride-deficient formula: Developmental Medicine & Child Neurology Vol 33(7) Jul 1991, 626-635.
  • Kellogg, C. K., & Pleger, G. L. (1989). GABA-stimulated chloride uptake and enhancement by diazepam in synaptoneurosomes from rat brain during prenatal and postnatal development: Developmental Brain Research Vol 49(1) Sep 1989, 87-95.
  • Kellogg, C. K., Primus, R. J., & Bitran, D. (1991). Sexually dimorphic influence of prenatal exposure to diazepam on behavioral responses to environmental challenge and on !g-aminobutyric acid (GABA)-stimulated chloride uptake in the brain: Journal of Pharmacology and Experimental Therapeutics Vol 256(1) Jan 1991, 259-265.
  • Lundgren, P., Stromberg, J., Backstrom, T., & Wang, M. (2003). Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3beta -hydroxy-5alpha -pregnan-20-one (isoallopregnanolone): Brain Research Vol 982(1) Aug 2003, 45-53.
  • Mallick, B. N., & Gulyani, S. (1993). Rapid eye movement sleep deprivation increases chloride-sensitive Mg-ATPase activity in the rat brain: Pharmacology, Biochemistry and Behavior Vol 45(2) Jun 1993, 359-362.
  • Miller, R. F., & Dacheux, R. F. (1983). Intracellular chloride in retinal neurons: Measurement and meaning: Vision Research Vol 23(4) 1983, 399-411.
  • Moricz, K., Gyetvai, B., & Bardos, G. (1998). Morphological and functional changes after benzalkonium chloride treatment of the small intestinal Thiry-Vella loop in rats: Brain Research Bulletin Vol 46(6) Aug 1998, 519-528.
  • Nurmukhambetov, A. N., & Iksymbaeva, Z. S. (1989). The effect of cadmium chloride on the processes of learning and memory in rats: Zhurnal Vysshei Nervnoi Deyatel'nosti Vol 39(4) 1989, 640-644.
  • Podoll, K., Berg-Dammer, E., & Noth, J. (1990). Neurological and psychiatric disorders in vinyl chloride disease: Fortschritte der Neurologie, Psychiatrie Vol 58(11) Nov 1990, 439-443.
  • Ranganathan, R., Cannon, S. C., & Horvitz, H. R. (2000). MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans: Nature Vol 408(6811) Nov 2000, 470-475.
  • Reuter, D., Zierold, K., Schroder, W. H., & Frings, S. (1998). A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ: Journal of Neuroscience Vol 18(17) Sep 1998, 6623-6630.
  • Soderpalm, B., Andersson, G., Johannessen, K., & Engel, J. A. (1992). Intracerebroventricular 5,7-DHT alters the in vitro function of rat cortical GABA-sub(A)/benzodiazepine chloride ionophore receptor complexes: Life Sciences Vol 51(5) 1992, 327-335.
  • Trullas, R., Havoundjian, H., & Skolnick, P. (1988). Is the benzodiazepine/GABA receptor chloride ionophore complex involved in physical and emotional stress? New York, NY: Plenum Press.
  • Vale, C., Schoorlemmer, J., & Sanes, D. H. (2003). Deafness Disrupts Chloride Transporter Function and Inhibitory Synaptic Transmission: Journal of Neuroscience Vol 23(20) Oct 2003, 7516-7524.

This page uses Creative Commons Licensed content from Wikipedia (view authors).
Community content is available under CC-BY-SA unless otherwise noted.