Assessment | Biopsychology | Comparative | Cognitive | Developmental | Language | Individual differences | Personality | Philosophy | Social |
Methods | Statistics | Clinical | Educational | Industrial | Professional items | World psychology |

Biological: Behavioural genetics · Evolutionary psychology · Neuroanatomy · Neurochemistry · Neuroendocrinology · Neuroscience · Psychoneuroimmunology · Physiological Psychology · Psychopharmacology (Index, Outline)

File:Small bowel duodenum with amyloid deposition 20X.jpg

Micrograph showing amyloid deposits (pink) in small bowel. H&E stain.

Amyloids are insoluble fibrous protein aggregates sharing specific structural traits. Abnormal accumulation of amyloid in organs may lead to amyloidosis, and may play a role in various other neurodegenerative diseases.

Definition[edit | edit source]

The name amyloid comes from the early mistaken identification of the substance as starch (amylum in Latin), based on crude iodine-staining techniques. For a period, the scientific community debated whether or not amyloid deposits were fatty deposits or carbohydrate deposits until it was finally resolved that it was neither, but rather a deposition of proteinaceous mass.[1]

File:Small bowel duodenum with amyloid deposition congo red 10X.jpg

Micrograph showing amyloid deposition in small bowel. Congo red stain.

  • The classical, histopathological definition of amyloid is an extracellular, proteinaceous deposit exhibiting beta sheet structure. Common to most cross-beta type structures they are generally identified by apple-green birefringence when stained with congo red and seen under polarized light. These deposits often recruit various sugars and other components such as Serum Amyloid P component, resulting in complex, and sometimes inhomogeneous structures.[2] Recently this definition has come into question as some classic, amyloid species have been observed in distinctly intracellular locations.[3]
  • A more recent, biophysical definition is broader, including any polypeptide which polymerizes to form a cross-beta structure, in vivo, or in vitro. Some of these, although demonstrably cross-beta sheet, do not show some classic histopathological characteristics such as the Congo red birefringence. Microbiologists and biophysicists have largely adopted this definition,[4][5] leading to some conflict in the biological community over an issue of language.

The remainder of this article will use the biophysical context.

Diseases featuring amyloids[edit | edit source]

Disease Protein Featured
Alzheimer's disease Beta amyloid[6][7][8]
Type 2 diabetes mellitus IAPP (Amylin)[9][10]
Parkinson's disease Alpha-synuclein[7]
Transmissible spongiform encephalopathy aka "Mad Cow Disease" Prion[11]
Huntington's Disease Huntingtin[12][13]
Medullary carcinoma of the thyroid Calcitonin[14]
Cardiac arrhythmias Atrial natriuretic factor
Atherosclerosis Apolipoprotein AI
Rheumatoid arthritis Serum amyloid A
Aortic medial amyloid Medin
Prolactinomas Prolactin
Familial amyloid polyneuropathy Transthyretin
Hereditary non-neuropathic systemic amyloidosis Lysozyme
Dialysis related amyloidosis b2-Microglobulin
Finnish amyloidosis Gelsolin
Lattice corneal dystrophy Kerato-epithelin
Cerebral amyloid angiopathy Beta amyloid[15]
Cerebral amyloid angiopathy (Icelandic type) Cystatin
systemic AL amyloidosis Immunoglobulin light chain AL[16]
Yeast Prions [Sup35],[17] Rnq1 (parastitic type infection in yeast)
Sporadic Inclusion Body Myositis S-IBM
Multiple myeloma

Non-disease and functional amyloids[edit | edit source]

  • Native amyloids in organisms[18]
    • Curli E. coli Protein (curlin)
    • Chaplins from Streptomyces coelicolor
    • Podospora Anserina Prion Het-s
    • Malarial coat protein
    • Spider silk (some but not all spiders)
    • Mammalian melanosomes (pMel)
    • Tissue-type plasminogen activator (tPA), a hemodynamic factor
  • Proteins and peptides engineered to make amyloid

Amyloid biophysics[edit | edit source]

Amyloid is characterized by a cross-beta sheet quaternary structure; that is, the beta-strands of the stacked beta-sheets come from different protein monomers and align perpendicular to the axis of the fibril. While amyloid is usually identified using fluorescent dyes, stain polarimetry, circular dichroism, or FTIR (all indirect measurements), the "gold-standard" test to see if a structure contains cross-beta fibres is by placing a sample in an X-ray diffraction beam. There are two characteristic scattering diffraction signals produced at 4.7 and 10 Ångstroms (0.47 nm and 1.0 nm), corresponding to the interstrand and stacking distances in beta sheets.[How to reference and link to summary or text] It should be noted that the "stacks" of beta sheet are short and traverse the breadth of the amyloid fibril; the length of the amyloid fibril is built by aligned strands.

Amyloid polymerization (aggregation or non-covalent polymerization) is generally sequence-sensitive, that is, causing mutations in the sequence can prevent self-assembly, especially if the mutation is a beta-sheet breaker, such as proline. For example, humans produce amylin, an amyloidogenic peptide associated with type II diabetes, but in rats and mice prolines are substituted in critical locations and amyloidogenesis does not occur.[How to reference and link to summary or text]

There are two broad classes of amyloid-forming polypeptide sequences. Glutamine-rich polypeptides are important in the amyloidogenesis of Yeast and mammalian prions, as well as Huntington's disease. When peptides are in a beta-sheet conformation, particularly when the residues are parallel and in-register (causing alignment), glutamines can brace the structure by forming intrastrand hydrogen bonding between its amide carbonyls and nitrogens. In general, for this class of diseases, toxicity correlates with glutamine content.[How to reference and link to summary or text] This has been observed in studies of onset age for Huntington's disease (the longer the polyglutamine sequence, the sooner the symptoms appear), and has been confirmed in a C. elegans model system with engineered polyglutamine peptides.[How to reference and link to summary or text]

Other polypeptides and proteins such as amylin and the Alzheimer's beta protein do not have a simple consensus sequence and are thought to operate by hydrophobic association.[How to reference and link to summary or text] Among the hydrophobic residues, aromatic amino-acids are found to have the highest amyloidogenic propensity. [How to reference and link to summary or text]

For these peptides, cross-polymerization (fibrils of one polypeptide sequence causing other fibrils of another sequence to form) is observed in vitro and possibly in vivo.[How to reference and link to summary or text] This phenomenon is important since it would explain interspecies prion propagation and differential rates of prion propagation, as well as a statistical link between Alzheimer's and type 2 diabetes.[How to reference and link to summary or text] In general, the more similar the peptide sequence the more efficient cross-polymerization is, though entirely dissimilar sequences can cross-polymerize and highly similar sequences can even be "blockers" which prevent polymerization.[How to reference and link to summary or text] Polypeptides will not cross-polymerize their mirror-image counterparts, indicating that the phenomenon involves specific binding and recognition events.[How to reference and link to summary or text]

Amyloid pathology[edit | edit source]

The reasons for amyloid association with disease is unclear. In some cases, the deposits physically disrupt tissue architecture, suggesting disruption of function by some bulk process. An emerging consensus implicates prefibrillar intermediates, rather than mature amyloid fibers, in causing cell death.[19] [8]

Studies have shown that amyloid deposition is associated with mitochondrial dysfunction and a resulting generation of reactive oxygen species (ROS), which can initiate a signaling pathway leading to apoptosis [20].

Histological staining[edit | edit source]

Clinically, amyloid diseases are typically identified by a change in the fluorescence intensity of planar aromatic dyes such as thioflavin T or congo red. Congo red positivity remains the gold standard for diagnosis of amyloidosis. This is generally attributed to the environmental change, as these dyes intercalate between beta-strands. Congophilic amyloid plaques generally cause apple-green birefringence when viewed through crossed polarimetric filters. To avoid nonspecific staining, other histology stains, such as the hematoxylin and eosin stain, are used to quench the dyes' activity in other places such as the nucleus where the dye might bind. Modern antibody technology and immunohistochemistry has made specific staining easier, but often this can cause trouble because epitopes can be concealed in the amyloid fold; an amyloid protein structure is generally a different conformation from that which the antibody recognizes.

References[edit | edit source]

  1. Kyle, R.A. (2001) Amyloidosis: a convoluted story. Brit. J. Haem. 114:529-538. PMID 11552976
  2. Sipe, J. D. and Cohen, A.S. (2000) Review: History of the Amyloid Fibril. J. Struct. Biol. 130:88-98. PMID 10940217
  3. Lin CY, Gurlo T, Kayed R, et al (May 2007). Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. Diabetes 56 (5): 1324–32.
  4. Nilsson MR (September 2004). Techniques to study amyloid fibril formation in vitro. Methods (San Diego, Calif.) 34 (1): 151–60.
  5. Fändrich M (August 2007). On the structural definition of amyloid fibrils and other polypeptide aggregates. Cellular and molecular life sciences : CMLS 64 (16): 2066–78.
  6. Chiang PK, Lam MA, Luo Y (September 2008). The many faces of amyloid beta in Alzheimer's disease. Current molecular medicine 8 (6): 580–4.
  7. 7.0 7.1 Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM (2008). Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Molecular medicine (Cambridge, Mass.) 14 (7-8): 451–64.
  8. 8.0 8.1 Ferreira ST, Vieira MN, De Felice FG (2007). Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases. IUBMB life 59 (4-5): 332–45.
  9. Haataja L, Gurlo T, Huang CJ, Butler PC (May 2008). Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocrine reviews 29 (3): 303–16.
  10. Höppener JW, Ahrén B, Lips CJ (August 2000). Islet amyloid and type 2 diabetes mellitus. The New England journal of medicine 343 (6): 411–9.
  11. "More than just mad cow desease", Nature Structural Biology 8, 281 (2001) doi:10.1038/86132
  12. Truant R, Atwal RS, Desmond C, Munsie L, Tran T (September 2008). Huntington's disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. The FEBS journal 275 (17): 4252–62.
  13. Weydt P, La Spada AR (August 2006). Targeting protein aggregation in neurodegeneration--lessons from polyglutamine disorders. Expert opinion on therapeutic targets 10 (4): 505–13.
  14. "Amyloidosis, Overview" by Bruce A Baethge and Daniel R Jacobson
  15. Dotti CG, De Strooper B (February 2009). Alzheimer's dementia by circulation disorders: when trees hide the forest. Nat. Cell Biol. 11 (2): 114–6.
  16. "Amyloidosis, Overview" by Bruce A Baethge and Daniel R Jacobson
  17. Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB (July 2005). Yeast prions [URE3] and [PSI+] are diseases. Proceedings of the National Academy of Sciences of the United States of America 102 (30): 10575–80.
  18. Hammer ND, Wang X, McGuffie BA, Chapman MR (May 2008). Amyloids: friend or foe?. Journal of Alzheimer's disease : JAD 13 (4): 407–19.
  19. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (April 2005). Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. The Journal of biological chemistry 280 (17): 17294–300.>
  20. Kadowaki et al., 2005. Amyloid bold italic beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death and Differentiation 12:19-24. [1]

External links[edit | edit source]


This page uses Creative Commons Licensed content from Wikipedia (view authors).
Community content is available under CC-BY-SA unless otherwise noted.